I concetto di carico immediato full-arch, applicato ad entrambi i mascellari anche in condizioni difficili, può, in base all’esperienza clinica maturata negli ultimi anni, evolvere impiegando presidi chirurgici innovativi quali il Platelet Rich Fibrin (PRF®) ed il Metronidazolo per gli innesti, unitamente ad impianti nanotraffati (1) e finalizzati al carico immediato (Intra-Lock system, Boca Raton, FL, US). Sebbene la realizzazione clinica del carico immediato possa, oggi, essere facilitata dall’impiego di tali presidi, è, tuttavia, nostra ferma convinzione che tale tipo di trattamento non debba escludere a priori le ben consolidate esperienze di riabilitazione bi-mascellari complesse che prevedono fasi ben distinte (estrazione, trattamento degli alveoli, innesti ossei, guarigione, posizionamento e successiva protesizzazione). Tale strategia riabilitativa per tappe ben distinte s’inscrive in una logica di sicurezza dettata da esperienza clinica plurieni e da tempi fisiologici di guarigione (1,3).

Il carico immediato full-arch (intera arcata) presuppone, per la logistica di programmazione del caso, la presa in considerazione a priori, da parte del clinico, di tutte possibili variabili che potrebbero incorrere durante l’intervento e nelle successive fasi di guarigione tessutale. Per tale motivo, la gestione contemporanea di tutti questi fattori chirurgici, protesici e bio-mecanici dovrebbe costituire il traghettato di una consolidata esperienza clinica più che una terapia a massiccia diffusione. Oggi è divenuta frequente la tendenza a proporre in qualsivoglia situazione una riabilitazione a trattata fissa tipo Toronto per entrambe le arcate. L’osteotomia crestale e lo spostamento apicale degli impianti diventa il presupposto di tecniche che hanno precise indicazioni terapeutiche (4-6) e che, riteniamo, dovrebbero essere proposte in situazioni non altrimenti affrontabili con protocolli fissi ad emergenza estetica e mantenimento del patrimonio osseo. La protezione di tipo Toronto può esistere nella perdita delle strutture papillari, in possibili complicanze parodontali abbinate alla perdita dell’altezza della gengiva cheratinizzata, in possibili complicanze igieniche ed estetico-funzionali nell’arcata superiore, impedendo, spesso, una sicura prospettiva sul grado del successivo riassorbimento osseo (7,8).

Il tipo di approccio proposto presuppone, invece, il rispetto della cresta ossea residua, con un recupero dimensionale delle strutture ossee per-implantali ed una filosofia generativa crestale riducibile che si avvale di biomateriali specifici e di membrana di fibrina (PRF), contenenti fattori di crescita (VEGF, PDGF, TGF-1, IGF-1). La tecnica chirurgica è rispettosa dei tessuti moli, pur preferendo l’approccio chirurgico tradizionale alla tecnica flap-less, poiché compensa l’accesso a lemo esteso con una cicatrizzazione accelerata dei tessuti molli grazie al PRF.

Introdotta da Choukroun e coll. nel 2001 (9-15), il PRF è una matrice strutturata di fibrina autologa ricca di Fattori di Crescita (16); la tecnica di preparazione di questo biomateriale non prevede l’uso di anticoagulanti, contrariamente ad altri concentra derivati, ed il prodotto è impiegato, nel carico immediato (16-20), sotto forma di membrane che permettono di proteggere i siti di innesto dalle aggressioni esterne e favoriscono la cicatrizzazione accelerata dei lembi (21). Lo stesso PRF viene impiegato per ispsessire le membrane di Schneider nel corso dei sinus-lift eseguiti contestualmente all’intervento implantare a carico immediato; in caso di piccole od estese perforazioni, lo stesso materiale consente di restituire l’integrità anatomo al senso (22,23). Mescolato ai biomateriali da innesto, il coagulo di fibrina agisce da legante biologico tra i frammenti ossei e da matrice cicatriziale interna all’innesto, esercitando un’azione neoangiogenetica e chemoattrattiva per le cellule osteo-progenitrice (24).

Il Metronidazolo è un antibiotico della famiglia dei nitro-5-imidazoli: il suo impiego nelle procedure di sinus-lift con PRF è stato descritto in letteratura (25) quale valida procedura di controllo della contaminazione anaerobica peri-operatoria, impiegando sistematicamente questo prodigio farmacologico con opportuni biomateriali, ed usufruendo del rilascio prolungato dei fattori di crescita da parte del PRF (26), è possibile affrontare casi chirurgici complessi gestendo con sicurezza i siti post-estrattivi e le tecniche di rigenerazione tessutale.

La solidarizzazione implantare con una tratta metallica rigida è l’applicazione del concetto ortopedico di cicatrizzazione ossea attraverso la funzione. L’unione rigida tra gli impianti interconnessi permette a questi ultimi di supportare, nell’insieme, gli stress occluso-funzionali dell’arcata edulcendo, in massima parte, le forze di taglio frontale, particolarmente nocive nei primi tempi dell’osteointegrazione. La funzione immediata, ben ripartita sull’arcata, e programmati a livello dei contatti occlusali, partecipa alla stimolazione della guarigione ossea degli impianti.

Caso Clinico

Il tipo di approccio proposto presuppone, invece, il rispetto della cresta ossea residua, con un recupero dimensionale delle strutture ossee per-implantali ed una filosofia generativa crestale riducibile che si avvale di biomateriali specifici e di membrana di fibrina (PRF), contenenti fattori di crescita (VEGF, PDGF, TGF-1, IGF-1). La tecnica chirurgica è rispettosa dei tessuti moli, pur preferendo l’approccio chirurgico tradizionale alla tecnica flap-less, poiché compensa l’accesso a lemo esteso con una cicatrizzazione accelerata dei tessuti molli grazie al PRF.

Introdotta da Choukroun e coll. nel 2001 (9-15), il PRF è una matrice strutturata di fibrina autologa ricca di Fattori di Crescita (16); la tecnica di preparazione di questo biomateriale non prevede l’uso di anticoagulanti, contrariamente ad altri concentrati derivati (17) ed il prodotto è impiegato, nel carico immediato (16-20), sotto forma di membrane che permettono di proteggere i siti di innesto dalle aggressioni esterne e favoriscono la cicatrizzazione accelerata dei lembi (21). Lo stesso PRF viene impiegato per ispsessire le membrane di Schneider nel corso dei sinus-lift eseguiti contestualmente all’intervento implantare a carico immediato; in caso di piccole od estese perforazioni, lo stesso materiale consente di restituire l’integrità anatomo al senso (22,23). Mescolato ai biomateriali da innesto, il coagulo di fibrina agisce da legante biologico tra i frammenti ossei e da matrice cicatriziale interna all’innesto, esercitando un’azione neoangiogenetica e chemoattrattiva per le cellule osteo-progenitrice (24).

Caso Clinico

Il tipo di approccio proposto presuppone, invece, il rispetto della cresta ossea residua, con un recupero dimensionale delle strutture ossee per-implantali ed una filosofia generativa crestale riducibile che si avvale di biomateriali specifici e di membrana di fibrina (PRF), contenenti fattori di crescita (VEGF, PDGF, TGF-1, IGF-1). La tecnica chirurgica è rispettosa dei tessuti moli, pur preferendo l’approccio chirurgico tradizionale alla tecnica flap-less, poiché compensa l’accesso a lemo esteso con una cicatrizzazione accelerata dei tessuti molli grazie al PRF.

Introdotta da Choukroun e coll. nel 2001 (9-15), il PRF è una matrice strutturata di fibrina autologa ricca di Fattori di Crescita (16); la tecnica di preparazione di questo biomateriale non prevede l’uso di anticoagulanti, contrariamente ad altri concentrati derivati (17) ed il prodotto è impiegato, nel carico immediato (16-20), sotto forma di membrane che permettono di proteggere i siti di innesto dalle aggressioni esterne e favoriscono la cicatrizzazione accelerata dei lembi (21). Lo stesso PRF viene impiegato per ispsessire le membrane di Schneider nel corso dei sinus-lift eseguiti contestualmente all’intervento implantare a carico immediato; in caso di piccole od estese perforazioni, lo stesso materiale consente di restituire l’integrità anatomo al senso (22,23). Mescolato ai biomateriali da innesto, il coagulo di fibrina agisce da legante biologico tra i frammenti ossei e da matrice cicatriziale interna all’innesto, esercitando un’azione neoangiogenetica e chemoattrattiva per le cellule osteo-progenitrice (24).

Caso Clinico

Il tipo di approccio proposto presuppone, invece, il rispetto della cresta ossea residua, con un recupero dimensionale delle strutture ossee per-implantali ed una filosofia generativa crestale riducibile che si avvale di biomateriali specifici e di membrana di fibrina (PRF), contenenti fattori di crescita (VEGF, PDGF, TGF-1, IGF-1). La tecnica chirurgica è rispettosa dei tessuti moli, pur preferendo l’approccio chirurgico tradizionale alla tecnica flap-less, poiché compensa l’accesso a lemo esteso con una cicatrizzazione accelerata dei tessuti molli grazie al PRF.
Fig. 6, a, b, c Dal set-up o da una eventuale ceratatura diagnostica viene ricavata una mascherina (a) che aiuta il laboratorio a preparare una dima chirurgica (b) ed una base di registrazione (c,d). Nel caso specifico, si è preferito lasciare degli stop occlusali sui molari al fine di mantenere i giusti rapporti inter-arcata.

Fig. 7 L’intervento viene eseguito in anestesia locale e supportato da sedazione cosciente intravenosa. Il posizionamento degli implanti (Intra-Lock, Boca Raton, FL, US) è preceduto dalle estrazioni dentarie e da un attento cirettaggio dei siti post-estrattivi eseguito con strumentazione piezeoelettrica. La posizione delle fixture è guidata dalla dima chirurgica: pur mantenendo una posizione palatale degli implanti, alla fine della preparazione, possono risultare fenestrazioni e deiscenze di vario grado evidenti nell’immagine. E’ importante che la stabilità primaria venga garantita da un design implantare finalizzato al carico immediato. Nella nostra filosofia, non viene eseguita alcuna osteotomia al fine di preservare tutto il supporto osseo per le future protesi. Sugli implanti vengono avvinti gli abutments “Flat”; ai fini estetici, è importante che la spalla del flat non ecceda il livello cresta.

Fig. 8 Tutti i sottosquadri ossee, le eventuali dei-scenze e fenestrazioni, gli alveoli post-estrattivi residui vengono riempiti di un mix di biomateriale (Re-Oss, Intra-Lock, Boca Raton, FL, US) e PRF, imbottito di Metronidazolo, preparato secondo l’apposito protocollo. In questo modo, si colmano le lacune ossee e si ispisce la cresta vestibolarmente, inducendo, con la fibrina del PRF ed i fattori di crescita, la formazione di una matrice di cicatrizazione interna all’innesto (14,18,19).

Fig. 9 a, b, c Sui flat abutments vengono montati specifici copings da impronta previamente sterilizzati (a); l’impessamento cresta eseguito con il mix di biomateriale e PRF è ricoperto di membrane di PRF: questo proteggerà l’innesto dall’aggressione esterna, favorendo la rapida cicatrizizzazione dei lembi e ridurrà l’inflammazione (b); viene praticata una sutura a punti staccati (c).

Fig. 10 I copings possono essere solidarizzati al portaimpronta oppure bloccati (nel caso specifico) con una resina fotopolimerizzabile (Luxabite, DMG America, Englewood, NJ, US) ed agevolmente implantori con un silicone specifico (Elite implant, Zermark, Badia Polesine, RO, Italy).

Fig. 10 a, b Viti trans-gengivali vengono posizionate sui flat abutments; due cilindri (a), solidarizzati alla mascherina di registrazione (b) consentono di registrare i rapporti interarcata mantenendo una corretta Dimensione Verticale

Fig. 11 a, b Montaggio in articolazione dei modelli in base ai corretti rapporti interarcata e DV

Fig. 12 a-d In laboratorio, vengono adattate delle faccette in policarbonato (Visio Igen, Bredent, Bolzano, Italy) sulla mascherina diagnostica (a,b); possono anche essere impiegati, in questa fase, comuni denti di cartina per protesi mobili; i cilindri in Ti vengono adattati allo spazio protesico ed alla DV precedentemente determinata (c,d)

Fig. 13 a, b Sulla base delle precedenti indicazioni, viene cerata e fusa, sui pilastri in Ti, una travata metallica che verrà passivata per incollaggio (27) sui monconi individualizzati.

Fig. 14 a, b, c Situazione clinica dopo 24h (a): viene provata la passività della struttura protesica e verificata con RX endorali (b) e/o OPT (c).

Fig. 15 a, b In laboratorio viene ultimata la resinastruttura della struttura protesica: è di vitale importanza la configurazione a “pontic” degli elementi intermedi (b), finalizzata ad un ottimale condizionamento dei tessuti molli.

Fig. 16 A 72h, viene consegnata la protesi fissa e verificata la corretta occlusione. Normalmente, i pazienti trattati in sedazione con questo protocollo non manifestano edemi importanti.

Fig. 17 a, b Situazione dei tessuti a 6 mesi: lo spessore della cresta è aumentato rispetto all’inizio (a); si evidenzia la presenza di una buona festonatura di gengiva chelarizzata ed un trofismo ottimale dei tessuti (b); la presenza di papille interdentine testimonia la maturazione del connettivo sottostante (b).

Fig. 18 a, b, c In questa fase, maturati i tessuti, procediamo di routine ad un’analisi estetica computerizzata del sorriso in relazione all’armonia del viso (software GPS Dentaire, Centre de Recherche Medicodentaire, Quebec, CAN) (28,29). Le correzioni vengono trasferite al laboratorio come linee di ceratura che verranno impiegate per una modifica estetica dei profilì di emergenza o per la ceratura di una travata in ceramica.
La nuova spirale di ultima generazione: Stabilità primaria senza rischi di osteocompressione

Bibliografia

